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The laminar flow about a ro ta t ing  disk s i t u a t e d  i n  a la rge  body of quiescent 
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f l u i d  w a s  first analyzed by von &man [l]. 

t a t i n g  disk has been studied by Millsaps and Pohlhausen 121 for f l u i d s  which 

have Prandt l  numbers i n  the  range 

the e f f e c t s  of compressibil i ty were examined by Ostrach and Thornton [3]. 

The heat t r a n s f e r  from such a ro- 

0.5 < (cv/cp) Pr < 10. For gases (Pr = 0 . 7 2 ) ,  c 
In  

the present  invest igat ion,  the  r e s t r i c t i o n  on Prandtl  number i s  l i f t e d ,  and 

heat  t r a n s f e r  r e s u l t s  a r e  obtained f o r  f l u i d s  of a l l  Prandt l  numbers. 

ANALYSES 

The heat t r a n s f e r  process i n  the f l u i d  i s  governed by the  conservation of 

* *. *v energy pr inciple ,  which takes the following form i n  c y l i n d r i c a l  coordinates 

where T i s  the  s t a t i c  temperature and V 2  i s  the Laplace operator. The ve- 

l o c i t i e s  may be rephrased i n  terms of von Karman’s s i m i l a r i t y  var iables  as 

follows : 
I 

and i n  addition, a dimensionless temperature may be defined as 

where Tw and T, respect ively represent the surface temperature (a constant)  

and t h e  ambient temperature. Introducing these new variables  i n t o  t h e  energy 
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The primes denote d i f f e r e n t i a t i o n  with respect t o  q and Pr  i s  t h e  Prandt l  

number of the  f l u i d .  From the  def ini t ion of 8 as given by equation (Zb), it i s  
(D m cu . c l e a r  that the  boundary conditions a r e  
I4 

e(o )  = 1, 8'0 as q + -  (4) 

Numerical solut ions of equation ( 3 )  subject t o  t h e  boundary conditions (4) 

have been c a r r i e d  out on an  I B M  653 electronic  computer f o r  Prandt l  numbers of 

0.01, 0.1, 1, 10, and loo*. The temperature d i s t r i b u t i o n s  corresponding t o  these 

solut ions are presented i n  f igures  1 and 2 respect ively for the  low and high 

Prandt l  number ranges. Also shown on the graphs a r e  the  values of t h e  veloci ty  

function H used as input  data i n  the  solut ion of equation ( 3 ) .  Inspection of 

these f igures  reveals  t h a t  f o r  low Prandtl  numbers, the  thermal boundary layer  

i s  much th icker  than t h e  veloci ty  boundary layer .  The opposite c h a r a c t e r i s t i c  i s  

displayed f o r  high Prandt l  numbers. 

asymptotic solutions.  

This suggests a procedure f o r  obtaining 

F i r s t ,  as the  Prandt l  number becomes very small, f i g u r e  1- ind ica tes  that H 

i s  e s s e n t i a l l y  constant throughout the  thermal boundary layer .  Under these c i r -  

cumstances, the  so lu t ion  of equation (3) i s  

where H(w)  = - 0.88447. In  par t icu lar ,  t h e  temperature der ivat ive a t  the w a l l ,  

needed i n  computing t h e  heat  t ransfer ,  i s  

(d8/dv)q=0 = - 0.88447 Pr 

From f igure  2, it i s  seen t h a t  as the Prandt l  number approaches very la rge  

values, the thermal boundary layer  i s  confined t o  a smaller and smaller 'por t ion 

of the  ve loc i ty  boundary layer .  This prompts us t o  write H i n  terms of a 

*The values of H(7) needed t o  carry o u t  the solut ions were obtained by re-solving 
von Karman's d i f f e r e n t i a l  equations. 
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series expansion about 7 = 0. So, 

H = H ( 0 )  + H ' ( 0 ) v  + H"o$+. . . 
CD 
tu Since H ( 0 )  = " ( 0 )  = 0, we wri te  

&I 2 
H = H " ( 0 )  % 

f o r  small values of 

imation f o r  H i s  

7. A solut ion of equation (3)  corresponding t o  t h i s  approx- 

J O  0 = 1 -  

The dimensionless temperature der ivat ive a t  the  w a l l  associated with t h i s  solu- 

t i o n  i s  

where the  value -1.02046 has been used f o r  H"(O), and r represents  the gamma 

function as found i n  numerous mathematical t ab les .  

MEAT W S F E R  RFSULTS 

The l o c a l  rate of heat t r a n s f e r  from the disk t o  t h e  f l u i d  may be evaluated 

using Four ie r ' s  Law, i.e., 

q = - k ( w a z ) z r O  ( 7 )  

h = q/('P, - 
Introducing a l o c a l  heat t r a n s f e r  coef f ic ien t  h by the  def in i t ion  

and evaluat ing equation ( 7 )  i n  terms of the var iables  of the analysis ,  there  i s  

obtained 
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0.076581 

0.39625 

1.1341 

Since (dQ/dq)V=o depends only on the Prandtl  number, it i s  seen t h a t  f o r  a given 

100 

f l u i d ,  the var ia t ion  of the heat t ransfer  c o e f f i c i e n t  with angular ve loc i ty  i s  

2,6871 

given by 

h - c u  1/2  

Further, h i s  constant over the  d isk  surface. 

Using the numerical solut ions of equation (3), the  dimensionless heat  t rans-  

f e r  r e s u l t s  are l i s t e d  i n  tab le  I. 

TABLE I 

Dimensionless Heat Transfer Results 

r,.,, 0.008 7051 

For t h e  l i m i t i n g  s i t u a t i o n s  of very low and of very high Prandt l  numbers, the 

following asymptotic expressions f o r  the hea t  t r a n s f e r  may be wri t ten u t i l i z i n g  

equations (5a) and (6a) 

h(!!-r/2/k = 0.88447 Pr, Pr + 0 

h(-$/2/" = 0.62048 Pr1/3, Pr + 0 
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A graphical presentat ion of the  heat t r a n s f e r  r e s u l t s  i s  given on f igure  3 .  

The r e s u l t s  have been p l o t t e d  i n  two d i f f e r e n t  ways, one appropriate t o  low 

Prandt l  number f l u i d s  and the  other  appropriate t o  high Prandt l  number f l u i d s .  

The asymptotic l i n e s  a r e  a l s o  shown (dashed). It i s  seen that the low Prandt l  

number asymptote a l ready c lose ly  coincides with the computed curve a t  

the  deviation being only 1.5%. 

approach t h e i r  asymptote somewhat l e s s  rapidly,  the difference between the  com- 

puted and asymptotic curves being about 6.55 a t  

l a r g e  from the p r a c t i c a l  point  of view. The s igni f icant  f a c t  i s  t h a t  the 
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Pr = 0.01, 

The high Prandt l  number heat t r a n s f e r  r e s u l t s  

Pr  = 100; t h i s  deviation i s  not 

asymptotic curves provide s u f f i c i e n t l y  accurate heat t r a n s f e r  r e s u l t s  outside 

the Prandt l  number r m g e  f o r  which the  numerical solut ions have been obtained. 

By u t i l i z i n g  e i L - r  <;he numerically-computed r e s u l t s  or the  asymptotic ex- 

pressions, heat transfer calculat ions can be c a r r i e d  out f o r  f l u i d s  of any Prandt l  

number. 
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F i  . 1. - Temperature distributions for low Prandtl number f l u i d s  
$H/H( 0 )  is input function for temperature solutions). 
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- Temperature distributions f o r  h i g h  Prandtl number fluids FiTH/Ei 0 )  i s  input function for temperature solutions). 
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Fig. 3. - Heat t r ans fe r  results. 
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